
SANDIA REPORT
SAND2014-16250
Unlimited Release
Printed May 2014

Flexible and Scalable Data Fusion
using Proactive, Schemaless
Information Services
Patrick M. Widener

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2014-16250
Unlimited Release
Printed May 2014

Flexible and Scalable Data Fusion using Proactive,
Schemaless Information Services

Patrick M. Widener
Scalable System Software Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1319

Abstract

Exascale data environments are fast approaching, driven by diverse structured and unstructured
data such as system and application telemetry streams, open-source information capture, and on-
demand simulation output. Storage costs having plummeted, the question is now one of converting
vast stores of data to actionable information. Complicating this problem are the low degrees of
awareness across domain boundaries about what potentially useful data may exist, and write-once-
read-never issues (data generation/collection rates outpacing data analysis and integration rates).
Increasingly, technologists and researchers need to correlate previously unrelated data sources and
artifacts to produce fused data views for domain-specific purposes. New tools and approaches for
creating such views from vast amounts of data are vitally important to maintaining research and
operational momentum. We propose to research and develop tools and services to assist in the
creation, refinement, discovery and reuse of fused data views over large, diverse collections of het-
erogeneously structured data. We innovate in the following ways. First, we enable and encourage
end-users to introduce customized index methods selected for local benefit rather than for global
interaction (flexible multi-indexing). We envision rich combinations of such views on application
data: views that span backing stores with different semantics, that introduce analytic methods of
indexing, and that define multiple views on individual data items. We specifically decline to build
a big fused database of everything providing a centralized index over all data, or to export a rigid
schema to all comers as in federated query approaches. Second, we proactively advertise these

3

application-specific views so that they may be programmatically reused and extended (data proac-
tivity). Through this mechanism, both changes in state (new data in existing view collected) and
changes in structure (new or derived view exists) are made known. Lastly, we embrace found data
heterogeneity by coupling multi-indexing to backing stores with appropriate semantics (as opposed
to a single store or schema).

4

Acknowledgment

The following individuals have given me valuable feedback and assistance during the project
documented by this report: Travis Bauer, Ann Campbell, Warren Davis, Bill Hart, Thomas Kroeger,
and Judy Spomer.

5

6

Contents

Introduction and Background . 11

Background and approach . 11

Use Cases . 13

The Drift Service . 14

driftd . 14

Publish/subscribe messaging . 15

EVpath middleware . 15

Constructing messages . 17

Processing messages in driftd . 18

Data Fusion, Relationship Management, and the Parts List 18

How Parts operate . 18

Data storage . 19

Relationship management . 19

Flexible Analytic Indexing . 20

Prefix trie . 21

R-tree and kd-tree . 21

Discussion . 22

Proactivity . 23

Rationale . 23

Preserving client control of updates . 24

Drift proactive elements . 25

libdrift . 26

7

Extending Drift for enterprise use . 32

Enterprise Data Fusion Services . 32

Conclusion . 34

References 36

Appendix

8

List of Figures

1 An example dataflow network that can be implemented using EVpath. 16

2 A customized dataflow network that can be implemented with EVpath. 16

3 An example of a prefix tree. 21

4 Visualization of data layout in an R-tree. 22

5 An EVpath filter function. Such a filter would be executed in a context of the form
int F(input, output). 25

6 Using libdrift to connect to driftd and perform initial setup. 27

7 Using libdrift to define a Part that contains immediate data. 28

8 Using libdrift to define a Part that contains external data. 29

9 Using libdrift to define a composite (fused) Part. 30

10 Using libdrift to retrieve the value of a Part. 31

11 Depiction of system-level relationship between Drift, the ESB, and other ESB ser-
vices. 33

9

List of Tables

10

Introduction and Background

This report discusses the background, design, and implementation of a software service, Drift,
designed to support data fusion. We use the term to mean the ability to treat distinct, possibly
heterogeneous, pieces of data as a single entity, for the purposes of identification, manipulation, and
analysis. We address a universe of structured and semi-structured data, from scientific experimental
and simulation results and inputs about which almost all possible metadata is known to word-
processor and spreadsheet documents whose provenance is unclear.

Indeed, this disparity in metadata availability in large part motivates this project. An abstract
data type (ADT) is a idiom directly supported by object-oriented programming languages, in which
developers are encouraged to map the intellectual process of data-driven design from the top (i.e.
the “real world”) down, as opposed to trying to think in detail about varied collections of primitive
data types. Drift represents an exploration of applying this principle at a higher level. Fast net-
works, cheap near-line storage, and the emergence of “big data” problems have led engineers and
scientists to develop data-centric design and problem-solving processes. These processes incorpo-
rate many different kinds of data produced by different methods, with varying degrees of attached
metadata, and with lifetimes exceeding typical project durations or even employee tenures.

Drift explores the possibility of forming abstractions around data that has no previous explicit
interrelationships. We see much of the potential usefulness of a service such as Drift in assisting
users to make explicit relationships between data that were previously part of shared understand-
ing, cultural assumptions, or hand-me-down knowledge among developers, or artificially separated
by administrative or other boundaries. Making these relationships explicit and available has the
potential to reduce misconceptions about how data in organizations is used.

Although making it easier to define such abstractions, to fuse data, is a key goal of Drift, it
is also an enabling step for data analysis. Assigning names to fused data objects is one way to
reference them, but applying analytic techniques to that naming process promises interesting bene-
fits. In particular, using components of the fused data itself to drive indexing schemes that support
automated learning and categorization can provide important leverage for queries and data mining-
style operations. In this Drift is designed to support making fused data objects into “first-class”
entities for the purposes of data mining and analysis, to be operated on using analytic methods in
the same way as primitive data types are in current usage.

Background and approach

The database research community was among the first to address problems of data fusion,
exploring approaches such as revised relational algebras and SQL optimization[4]. Large-scale
availability of distributed system middleware later drove investigations into federated database and
query services[11, 19] in 3-tier enterprise application architectures, and this flavor of data fusion
has persisted through an evolution to service-oriented architectures[16].

Drift is intended to improve the availability and utility of federated query-style data services

11

for researchers in large-data environments comprising multiple heterogeneous sources by making
it easier for them to construct views on distributed data that are meaningful to them. Drift embodies
a proposition that significant expressive power can be obtained by connecting application-specific
views to fused and discrete data sources (flexible multi-indexing), and that tools and software
systems that directly support this will prove useful. Drift’s design further assumes that, given such
tools and systems, facilities that provide push-based notification of changes in those views and that
can be integrated directly into applications and data (data proactivity) will also prove useful.

Our method of defining and advertising views on distributed data is more flexible than tra-
ditional federated query approaches in that it encourages a bottom-up approach where multiple,
perhaps inconsistent views on the same data are possible. Rather than finding ways to limit the
proliferation of these views, Drift makes them reusable and extensible. Drift also aims to rein-
troduce distributed query capabilities for data other than semantically organized text, as much
recent research has emphasized federated text search[1]. In contrast to existing data mining/anal-
ysis tools such as Splunk[2], Drift provides programmatic solutions compatible with extremely
high-throughput streaming data environments where indexing, analysis and shaping of metadata
and data must be performed in situ, and where advanced analytic indexing capabilities can be
introduced directly by scientists and researchers.

By implementing flexible multi-indexing, Drift enables users to define their own customized
views for the metadata they are concerned with, and directly embed these structures into a meta-
data service. While defining indexing structures is a fairly straightforward (and obviously useful)
operation for commonly used hierarchical naming structures such as tries, we believe that more
novel results will come from the use of analytic data structures for indexing.

For example, as high-dimensional, big-data scenarios become commonplace, and in a dynamic
metadata environment such as that we envision, kd-trees[3] whose dimensional components can be
customized by end-users have the potential to provide extremely granular data selection while still
maintaining efficient indexing. Another example is the use of a kd-tree to implement a nearest-
neighbor search, which can for example complement the automatic classification tasks in the Cyber
domain. Of particular interest are scenarios where metadata objects (potentially comprising mul-
tiple objects spanning multiple backing data stores) can be indexed by more than one user-defined
index structure (for example, consider a feature set generated by computational simulation, indexed
both hierarchically by a trie and by an N- dimensional hyperplane through the feature set).

Users wishing to construct a new fused data product through the use of multiple indexes may
wish to know if related data products are already available so that those products might be reused
or extended. Drift provides a publish/subscribe-like model where entities interested in changes in
the data represented in a service, or changes in the structure of the service itself (addition of new
indexes, for example), can be proactively notified rather than having to interrogate the service. This
style of state management provides an asynchronous, eventually-consistent global picture of the
available views defined by all users, which is both necessary to enable discovery and encourage
reuse, and more flexible and scalable than federated query approaches enforcing stricter consis-
tency semantics. We also expect proactivity to provide direct benefits to users, allowing coupling
between computational or sensor-based results. Consider for example the advertisement of a fused
data product that must await a cooperating computation to be completed, or the establishment of

12

a condition driven by asynchronous external phenomena (such as a malicious network attack de-
tected by a stateful firewall). Proactive interfaces can also complement the trigger- or change-based
mechanisms already available in the backing stores Drift uses.

Drift uses flexible and scalable schemaless data stores to store and make available heterogeneously-
structured and unstructured data. These tools have been studied in detail at Sandia and elsewhere,
and Drift does not innovate in their design or construction. There are several flavors of these
stores, each representing a particular choice of trade-offs: key-value (Amazon Dynamo[14] and
descendants), column-oriented (e.g. Google BigTable[8], Apache Cassandra), document-oriented
(e.g. Couch, Mongo), and graph/RDF/adjacency (e.g. Neo4j, Allegro). Drift uses this diversity
of data representation to more effectively cope with the variety of data and metadata we expect to
encounter.

More interestingly, Drift extends traditional federated-query-style data management by pro-
viding the ability to construct logical views over physical data residing in multiple such stores,
leveraging the unique benefits of each. For example, the best method for representing relationships
between documents might be a graph database, but it could prove useful to associate that relation-
ship with sets of experimental results residing in a column-store. Lastly, being able to incorporate
tools like HBase (thereby coupling map-reduce computations) enables a further degree of richness
in data view definition.

Use Cases

Issues raised in the following use cases motivate our work:

1. Long-running engineering efforts accumulate vast stores of different but equally important
data over time as artifacts of design, testing, and production. Design documents include re-
ports, schematics, spreadsheets, emails, and other notes; these are typically produced by and
manipulated with commercial office productivity software such as Microsoft Office. Testing
data adds to this large amounts of numerical results, test descriptions, and parameter sets.
Production data adds another type of data store to the problem, as database management
software is frequently used to maintain inventory information. When problems are detected
during testing or production use, answering the questions that lead to root causes requires a
holistic look back at a large and interrelated data space: What testing regime was used for
the widget in question? was its design valid? how many of these widgets are in produc-
tion? Combining different heterogeneous data in the right ways can quickly illuminate these
issues.

2. Certain corporate data must be mined for features which are relevant to ongoing operations.
For instance, streaming telemetry collection from internal cloud deployments can pose is-
sues deriving from all four of the “V’s” of big data: volume, velocity, variety, and veracity.
This telemetry can include system health and performance monitoring as well as application
data streams. Fusing these data streams to support enterprise decision-making is an impor-

13

tant capability (consider, for example, an internal cloud-based “honeypot” used to isolate,
diagnose, and respond to cybersecurity attacks in near-real-time).

The Drift Service

Drift is a client/server implementation, based on publish/subscribe middleware, of the data
fusion service design described in the previous section. The following components of Drift are of
interest and will be discussed in more detail in this chapter.

• A persistent daemon driftd that runs as an independent process on a POSIX-flavored
system;

• A client library, libdrift, of C++ objects that are used to interact with driftd;

• An instance of the Neo4J graph database, used by driftd for relationship management;

• An (optional) instance of the MongoDB schemaless data store, used by driftd for arbitrary
data storage;

• An (optional) instance of the Mule Enterprise Service Bus, whose integration with Drift is
described in Chapter .

driftd

driftd is a persistent, independent process which receives messages from clients and sends
response messages to those clients. driftd also periodically sends advertisement messages with
certain information about the current state of the service as well as update messages when infor-
mation items managed by the service undergo state changes. These advertisement and proactive
messages go out to any interested (subscribed) party.

driftd encapsulates several capabilities and/or subsystems of note which will be described
in this chapter. All communication is accomplished in a publish/subscribe messaging style and is
enabled by a third-party messaging subsystem. This subsystem also provides the infrastructure for
defining message types and is responsible for data marshaling between client and server. Flexible
analytic indexing provides novel ways for clients to refer to data items. The raison d’être of Drift
is its implementation of data fusion, which is accomplished via a composite data structure termed
the parts list. Finally, we discuss the proactivity features of Drift and how they make interacting
with the service more natural.

14

Publish/subscribe messaging

Drift is based in part on ideas realized in a research artifact known as the Proactive Direc-
tory Service[7]. This service was used as a key infrastructure component for several years, but
over time several shortcomings were identified. In particular, PDS required clients to establish a
session-based conversation with a server using a set of remote procedure calls (RPCs). Clients that
were only interested in updates about data items or otherwise had limited or bursty interactions
with the server were forced to maintain this session for the duration of their interaction. Part of
the design rationale for PDS was to provide a more lightweight, scalable means of information
awareness among cooperating processes. Even though this situation only affected a certain subset
of applications using PDS, this was enough to justify revisiting the design.

Interactions with driftd are explicitly message-based, as opposed to RPC-based, and there
is no notion of a persistent session with a particular instance of driftd. A publish/subscribe
(pub/sub) model is implemented, and while driftd is a central point of published messages,
there is in principle nothing preventing multiple driftd services from operating cooperatively
in a peer-to-peer arrangement. The implementation described here assumes a single driftd
instance.

There are many implementations of pub/sub middleware available as open-source software,
each with relative advantages and disadvantages. We now describe the EVpath middleware that
was chosen for the implementation of Drift.

EVpath middleware

EVpath[9] is an event transport middleware layer that can be used to form arbitrary dataflow
graphs among cooperating processes. EVpath is built around the concept of stones (as in “stepping
stones”) which can be linked together to form a path. Stones in EVpath are lightweight entities that
roughly correspond to processing points in dataflow diagrams. Stones of different types perform
data filtering, data transformation, mux and demux of data as well as transmission of data between
processes over network links.

Figure shows an example dataflow network that one might use EVpath to implement. Con-
nected stones distribute data from the source through the network to the sinks. It’s unreasonable to
assume that all sinks are interested in the same data, and in fact each sink might want to customize
the event stream in its own particular way (with sink i customizing its stream with a function Fi).
An efficient implementation of event delivery would place these filter functions as close to the
source as possible to avoid transmitting unwanted data that would only be discarded on arrival at
its destination (Figure).

Drift uses EVpath to establish just such dataflow graphs between driftd and its clients. Fur-
thermore, Drift allows clients using libdrift to customize their event streams (this is described
more fully in Section .

15

Figure 1. An example dataflow network that can be implemented
using EVpath.

Figure 2. A customized dataflow network that can be imple-
mented with EVpath.

16

typedef struct _simple_part_xfer {
unsigned long flags;
struct _simple_part part;
char* index_name;
char* index_spec;

} simple_part_xfer, *simple_part_xfer_ptr;

FMField drift::simple_part_xfer_fields[] =
{

{"flags", "integer", sizeof(unsigned long), FMOffset(drift::simple_part_xfer_ptr, flags)},
{"part", "simple_part", sizeof(drift::simple_part), FMOffset(drift::simple_part_xfer_ptr,

part)},
{"index_name", "string", sizeof(char*), FMOffset(drift::simple_part_xfer_ptr, index_name)},
{"index_spec", "string", sizeof(char*), FMOffset(drift::simple_part_xfer_ptr, index_spec)},
FMfields_terminator

};

Constructing messages

Part of EVpath’s management of the dataflow graph is the marshaling and unmarshaling of
data as it is passed to and from the network. EVpath relies on a companion library, FFS [10], to
accomplish the message definition and description required for this data management. Drift, in
turn, uses FFS facilities to define the different messages that are exchanged between driftd and
its clients.

Figure shows how a sample Drift message is defined using FFS for use with EVpath. The
message structures are defined in conventional C-language style for use in the code of clients and
driftd, but extra information has to be supplied in order for those structures to be marshaled to
and from the network. An exhaustive description of all the message definition options possible in
FFS is beyond the scope of this document, but examining this structure in slightly more detail is
instructive:

Each field of the C structure is represented in a metadata structure used by FFS. Each field is
tagged with the following:

• A type specifier (e.g. “integer” for flags). This specifier indicates what kind of marshaling
is required for the field, which can enable certain optimizations. This corresponds loosely to
C-style typing but size and signed-ness is not reflected here.

• The size of the field in bytes.

• The offset of the field from the beginning of the structure.

New messages are added to the set that driftd understands by defining them in this fash-
ion. While recompilation is necessary to incorporate new messages defined using this method,
there are also some limited EVpath facilities for defining message types dynamically and using
introspection-based marshaling.

17

Processing messages in driftd

All defined messages are registered by driftd with EVpath and given an associated handler
function. These handler functions are called asynchronously when messages arrive. Each handler
has access to the main Drift service object in driftd, and uses this object reference to invoke
methods on the service object. The body of driftd is simply an event loop, waiting on mes-
sages to arrive and their handler functions to use the service object. Appropriate thread exclusion
measures are used by driftd to ensure the integrity of its internal data.

Data Fusion, Relationship Management, and the Parts List

Drift’s data fusion functionality revolves around the Part concept. Fundamentally, a Part
encapsulates the following:

• A datum, along with any metadata necessary to store or retrieve that datum;

• A UUID that can be associated with index entries in any index maintained by a driftd
instance;

• A list of “child” Parts

In this section we describe how Parts are used by driftd to store and retrieve data, the dif-
ferent types of data storage used by driftd, and how relationships between fused Parts are
maintained.

How Parts operate

The Part concept is realized in a class, drift::part. This class encapsulates the infor-
mation described above. Each time driftd receives a request to associate a datum with an index
entry, it generates an UUID (using the boost::uuid library). These UUIDs are formed in part
using the network address of the service and so are designed to be globally unique across multiple
driftd instances. The UUID is then added as the stored value, using the given indexing informa-
tion in the request, to the specified index structure. It is important to note that Parts know nothing
about the various index structures maintained by driftd —they cannot retrieve the index key of
any entries they may be associated with.

Drift allows more than one index to maintain an entry associated with a particular UUID. This
allows very flexible treatment of data items. For instance, enumerating a complete set of data items
using a name-based index is straightforward, and it might be useful to simultaneously be able to
perform nearest-neighbor searches on members of that set (based on information maintained in
another index structure).

18

Data storage

Once a UUID is associated with a drift::partinstance, the metadata for the indicated
datum is handled. driftd distinguishes between two types of storage for data, immediate and
external. This reflects a need to compromise between efficiency and flexibility. Many uses of
Drift will involve simple or primitive data items —character strings and real or integral numbers.
Rather than generate metadata and store these primitive items in MongoDB, driftd denotes the
Part holding that data as immediate and loads/stores the data along with the Part metadata. In
practice, this means that immediate data items are kept in the memory of the driftd process,
and accessing them does not typically require a request to an external database. While there are
caching issues associated with this type of behavior, addressing them is not a priority for Drift.

An external data item has associated with it sufficient metadata to store and retrieve it from
some backing store external to the driftd process. driftd makes use of its companion Mon-
goDB database for some external items, and for these the metadata consists of the database, collec-
tion, and column name sets required to uniquely identify data within a MongoDB service. Other
external data can include items in relational databases, for which the metadata contains database
connection information as well as a SQL query that will retrieve the data. Another external type
is files on a filesystem, for which the metadata is a Universal Resource Locator (URL) that can be
used to retrieve the file from a remote location.

drift::parthas methods for loading and storing data from the storage specified by the
metadata. There is currently a size threshold beyond which a Part’s data will not be held by
driftd in memory, and any requests for it will be satisfied by forwarding the current metadata to
the requestor.

Relationship management

A Part also contains the foundations for data fusion. This is implemented in each drift::partby
an associative set of child Part references and UUIDs. Constructing a fused data part is then done
internally to driftd by adding a set of child Parts to this set. The fused Part, being an in-
stance of drift::part, is given a UUID and can be indexed just like any other. From the user
point of view, since Parts are not typically referred to by UUID (although there is a message type
that will send the UUID on driftd’s advertisement channel), a set of index entries representing
different Parts is supplied as part of a “fuse” request along with a proposed index entry to refer
to the fused Part.

Part metadata on the backing store indicates whether the Part is a fused part or not. If so,
the set of child PartUUIDs is retrieved and each Part’s data is loaded in turn as though it were a
simple Part. While nothing in principle prevents this recursive design from extending to arbitrary
levels of Part composition, the current driftd implementation prohibits Parts that are part of
a composite from holding child Parts themselves.

19

In order to persist information about Part relationships, Drift uses the Neo4j 1 graph database.
This information could have been stored using MongoDB or a low-overhead relational database
like SQLlite. The choice of using Neo4j as opposed to SQLlite came down to a design tradeoff.
SQLlite functions as an in-memory query-able data store with persistence ability, while Neo4j re-
quires a connection to an external process. It was decided that the more natural representation
of a network of interrelated Parts would be obtained by using Neo4j, which would not require
the multiple joins of a relational database solution or the relatively complicated query expressions
needed to store and retrieve that representation in a column-store like Mongo. Additionally, this
choice gives driftd greater control over its own memory usage, allowing it to trade greater
request latency for a smaller footprint; for an asynchronously-oriented service this seems a reason-
able choice.

A composite Partwith 5 child Parts in its part-list is persisted in Neo4j as a Part node with
outgoing arcs to 5 other Part nodes. The Neo4j API allows information about all such related
nodes to be retrieved with a single call to the server, which is convenient for driftd’s purposes.
Neo4j allows the association of data with relationship entities (conceptually, associating data with
arcs in the relationship graph). Part UUIDS, metadata, and immediate Part values are stored in
these property lists. For Parts that are not immediate-data, or those whose immediate data values
exceed the size threshold, the metadata for retrieving that data from MongoDB is stored instead
(in MongoDB these data are stored as a column-set indexed by UUID).

driftd communicates with the Neo4j server using a REST-style interface over HTTP. There
is no C/C++ language level interface for Neo4j, and even in other development languages the
language-level libraries are implemented on top of Neo4j’s REST interface. We use the open-
source Casablanca REST SDK 2 to facilitate communication through the REST APIs of Neo4j
and other services 3. Load and store operations of Parts are implemented by calling through the
Casablanca library to Neo4j.

Flexible Analytic Indexing

Flexible analytic indexing is central to the design of Drift. Flexible refers to the ability of
driftd to accommodate user-defined data structures into its architecture without requiring major
code changes. Two of the three existing indexes used by driftd are analytic ones, allowing
arbitrary data to be tracked using selected features either from the data itself or selected by the
user. This section describes the three index structures used by driftd and discusses possible
future enhancements to the indexing arrangement.

1Available at http://www.neo4j.org/.
2Available at http://casablanca.codeplex.com/.
3Incidentally, it is our use of Casablanca which drives the requirement of a C++ compiler implementing the C++-11

standard in order to build driftd.

20

Figure 3. An example of a prefix tree.

Prefix trie

A hierarchical name space is a basic means of organizing information. File systems, the Win-
dows registry, and several directory service protocols have all provided such name spaces; they
are well-understood and highly flexible. The base data structure for these name spaces tends to be
associative data structures with character strings for keys; very frequently some form of hash table
is chosen.

Another associative structure that can be used for this, and the one that Drift uses, is a prefix
trie or trie[6]. Tries have lookup-cost and storage advantages over hash tables, especially when
the entire trie can fit in memory. A driftd instance contains a Trie class object that is used to
implement a POSIX-style hierarchical mapping of ’/’-delimited strings to UUIDs. This is intended
to be the default index structure for Drift, and should prove to be sufficient for many application
needs.

R-tree and kd-tree

A large part of the utility of Drift comes from its ability to use analytic methods to map to
Parts. Indexes that deal with multidimensional data, in particular, are useful for “big data”
applications. Two such indexes are the kd-tree[3] and R-tree[13, 18].

A kd-tree is useful for splitting a k-dimensional search space into hyperplanes, in the same way
a binary tree partitions its key space into two halves at each node. A kd-tree is a generalization

21

Figure 4. Visualization of data layout in an R-tree.

of a binary tree for data with k dimensions. The kd-tree is useful for efficient range-based and
nearest-neighbor searches of multidimensional data.

R-trees are used primarily for spatial indexing of multi-dimensional data. Where a kd-tree
would, by construction, split each dimension in the key space into halves at each node of the tree,
an R-tree organizes its key space hierarchically, in that each node in the tree forms a “bounding
polygon” that “contains” the keys in the subtree beneath it. R-trees are generally used to index
geographical data and polygons for graphical systems, and Drift’s usage of them is analogous. To
illustrate, consider using an R-tree to index machines in a data center using a vector of performance
data from each machine as the key space. An R-tree would then allow the identification of a set
of machines contained in a range for each component of that vector (identifying the minimum
bounding polygon where each point in the polygon is represented by a component of the vector).
This is a slightly different but related query and result than would be handled by a kd-tree. For
instance, a nearest-neighbor query of a kd-tree would return only the nearest N neighbors, even if
there were 2N neighbors in the given range; the R-tree would return all the neighbors in the ranges
specified in the query.

The current driftd implementation uses an R-tree implementation provided by the Boost
suite of C++ libraries[5]. The kd-tree implementation is an open-source library[15].

Discussion

We recognize that the index structures included with Drift are unlikely to address all possible
indexing needs. This is a key design aspect of Drift realized in the Part concept. Any associative
container that can map some input to a Partwill be sufficient for Drift, as long as a set of message

22

definitions and handlers are added to allow libdrift clients to use it.

Drift was originally designed to accommodate index addition at runtime. This design goal was
eventually deferred in order to achieve a sort of “minimum viable implementation” which could
be used as a basis for iteration and improvement. However, future possible extensions to Drift may
revisit this issue.

Currently, adding an additional index to Drift requires modification of the project source and re-
building. More flexible options were considered as part of the design, each with tradeoffs between
ease of programming, deployment, and performance. The first is the use of a C++ shared object
containing the new index structures and message definitions. Installing a new index is triggered by
a message from a client with a reference to the shared object, which is loaded using thedlopen()
system call. This obviously requires shared objects for all possible desired indexes to be deployed
along with driftd.

The second solution relies on a C++-to-Python passthrough, where new index structures can be
moved between address spaces running Python interpeters using that languages built-in code mo-
bility facilities. Access to the Part UUIDs maintained by libdrift is accomplished through a
specialized set of messages. This approach, with at least one interposed layer of software, imposes
additional performance penalties, although in Drift’s intended usage regimes it’s unclear that this
would be a practical issue.

Other more radical rearchitectures of Drift to solve this issue are possible, and were considered
during the design stage. One in particular would implement the entire indexing layer in Python,
communicating with a separate UUID/Part management service.

Another interesting question for possible future evolution of Drift is which indexes might be
useful to incorporate as first-class citizens, as it were, by bundling them in the source code. Pos-
sibly of greatest interest here is the use of remote processing to point to a Part. In this way,
significantly more complex analysis on multi-dimensional data might be possible, at the cost of
extra network traffic. Such architectures are common in enterprise systems, where output from
multiple application logic tiers is combined in order to produce a logically-organized response to
an end-user request.

Proactivity

Rationale

We use the term proactivity in the same manner as was used in prior research[7], to denote the
use of an active interface between entities where updated information is transmitted to interested
observers without their having to continually poll for it. Such an interface presents advantages in
system scalabilty, information freshness, and allows applications to be written in a more modular,
decentralized style. We note that proactivity is a well-established design technique, with instances
found at architectural (“write-through” caches), operating system (device interrupt handling), and

23

software engineering (Java EE Beans, Microsoft DCOM).

Drift applies proactive interfaces to several of its internal information structures. These updates
take the form of EVpath messages, which are defined using the same FFS facilities as are used to
define Drift system messages. There is a well-known contact point (TCP/IP host/port or other
unique network connection identifier) serviced by driftd known as the advertisement channel.
If a Drift client is interested in general driftd updates, or knows that it will subscribe to data
updates, that client subscribes to the advertisement channel before performing any other Drift
operations, and is prepared to handle (i.e. has handler functions defined for) update events for
the data in question. Subscribing to the advertisement channel before performing other operations
ensures that no update messages about specific data are missed by the client.

Drift clients indicate when they request or store data in driftd if they wish to receive updates
for that data. When driftd sees this indication, it adds that data to the list of updates it pushes
on the advertisement channel. By default, separate update events for all proactive data are pushed
to the single advertisement channel. However, if a client wishes to split updates for a particular
item off into a separate channel, it can indicate so to driftd, which then replaces the data update
payload in the advertisement channel event with contact information for the new channel. Once the
client sees this in the advertisement channel, it can retrieve that contact information and subscribe
to the new channel. This technique is most useful if the data in question is frequently updated or if
summarization of that data is useful. In the next section, we illustrate how this is accomplished in
Drift using EVpath facilities.

Preserving client control of updates

The primary advantage to clients of pull-based interfaces is control. Pull-based interfaces allow
clients to manage when/if messages are sent and to anticipate replies (since the fact that a reply is
impending and the type of information the reply carries are both known). Proactivity allows clients
to trade control for performance, as message traffic is only generated when updates occur. As long
as updates occur infrequently, this lack of control is not significant. However, a client that registers
interest in an object that begins changing with unanticipated frequency soon finds itself swamped
with update messages. These update messages may not even be needed when they arrive, or may
only be needed depending on other application-specific factors; proactivity in this case does more
harm than good.

At first glance, providing a filter at the client to discard unwanted or unneeded updates might
seem enough. Although this does allow the application to ignore updates, the update messages
are still sent across the network, increasing the load on the server, the network, and the client.
Providing a single interface at the server to control proactive traffic is also insufficient, as different
clients interested in changes may have different criteria for discarding update messages.

A better approach allows client-specific customization of the update channel. To customize
a channel, a client provides a specification (in the form of a function) of what events it will be
interested in. The server then uses these specifications, on a per-client basis, to determine whether

24

{
int i, j; double sum = 0.0;
for (i = 0; i < MAXI; i = i + 1) {
for (j = 0; j < MAXJ; j = j + 1) {

sum = sum + input.array[i][j];
}

}
output.avg_array = sum / (MAXI * MAXJ);
if (sum > THRESHOLD) return 1; /* submit */
else return 0; /* filter out */

}

Figure 5. An EVpath filter function. Such a filter would be exe-
cuted in a context of the form int F(input, output).

or not to send the update event.

EVpath enables customization of update channels through a mechanism called filter stones.
Drift handles the interface with EVpath, and Drift clients simply need to supply a filter function.
The filter is installed at driftd and runs each time an update event is generated. The filter
function can inspect the message payload, transform part of it, or simply discard the message
before it is sent from driftd according criteria in the function.

Filters are sent by the client as functions written in a subset of C4, supplied as a character string
in a request message to driftd. The filter function is then dynamically translated using an in-
memory compiler to machine code for the target architecture and called directly as a C function
when update messages are generated. Figure 5 shows a typical filter function. In this example,
the update message (available to the function as a structure called input) contains an array of
doubles, and the client is only interested in receiving the update message if the average of this
array’s values is above a certain threshold. The filter function computes the average and compares
against the threshold value, discarding the message if the constraint is not met.

In this way, clients can maintain control over which updates they see for particular data, while
preserving their ability to stay aware of all changes in other data.

Drift proactive elements

The following conditions in driftd will result in the generation of an update message on the
advertisement channel:

• Change to an existing index (addition or removal of an index entry)

• Installation or removal of an index

4The filter language has been restricted in certain ways related to pointer manipulation and memory management
for code safety considerations.

25

• Modification of a Part

• Updates generated by backing stores

• New Part defined

• New Part fusion defined

• New update channel created

Clients are free to ignore these updates as they wish, or delegate them to individual update
channels for customization.

libdrift

libdrift is a C-language-based shared object library designed to be linked into applications
that wish to use Drift. It contains facilities for declaring message structures, submitting request
messages to driftd, and subscribing to advertisement and control channels.

In this section we present several interaction diagrams that show how a user executable would
use libdrift to contact and make requests of driftd, covering a set of common use cases.

26

Figure 6. Using libdrift to connect to driftd and perform
initial setup.

27

Figure 7. Using libdrift to define a Part that contains im-
mediate data.

28

Figure 8. Using libdrift to define a Part that contains ex-
ternal data.

29

Figure 9. Using libdrift to define a composite (fused) Part.

30

Figure 10. Using libdrift to retrieve the value of a Part.

31

Extending Drift for enterprise use

The effects of “big data” problems on information technology organizations have been well-
documented. Whether managing huge online presences, performing large-scale scientific experi-
mentation and simulation, or ingesting dense streaming data, these organizations face the challenge
of converting vast stores of data to actionable information. Some of the specific problems faced in
the application domain, however, also manifest themselves in the management of enterprise data
stores and sources. For instance, computational scientists and enterprise application developers
both encounter “siloed data”, where domain boundaries restrict awareness about what potentially
useful data may exist. “Write-once-read-never” issues, where data generation/collection rates out-
pace analysis and integration processes, occur in both realms, as simulations generate petabytes
of data per day and as documents relating to design and testing processes accumulate over time,
eventually succumbing to bit-rot.

We anticipate the integration of enterprise data stores and sources, once considered the exclu-
sive province of “the IT shop”, with data analysis capabilities developed for use in application
domains. An example of this is the mining of employee safety incident data to reveal previously
unknown trends and correlations. A service-based integration can also provide benefits in the
opposite direction. For organizations which develop and maintain their own toolsets to support
their work processes (such as software libraries for high-performance computing tasks), making
raw and analyzed data outputs available in regular, extensible, and composable ways can improve
productivity, accelerate the solution of new problems and reduce reinvention of the wheel.

Drift includes specialized low-overhead publish/subscribe interfaces which are necessary for
its HPC role, but are not suitable for enterprise integration. We are using an Enterprise Service Bus
to provide a service-oriented, discoverable, and general interface to Drift.

Enterprise Data Fusion Services

Drift was originally targeted at HPC and cloud environments, with specialized, low-overhead
publish/subscribe interfaces suited to their requirements. While those kinds of considerations are
appropriate and necessary in a research software environment, they make integration into larger
software architectures very challenging. Service-oriented architectures and software-as-a-service
models adopted in the pursuit of enterprise application integration have provided traction on these
problems for business applications. The growing importance of metadata, Big Data problems, and
coupled computations on heterogeneous platforms is driving the development of research soft-
ware whose SOA-style encapsulation promises benefits outside their application domains—if the
integration challenges can be overcome.

We have explored the feasibility of such integration, using the data fusion and flexible indexing
capabilities of Drift as a test case. Our goal is to create an enterprise service with well-defined
endpoints, discovery and introspection capabilities. We also want to make possible the construction
of more complex service-based offerings which make use of Drift service endpoints.

32

MongoDB

DIsk/URI

RDBMS

Ephemeris
Service

Part List

Part

Part

Part

PartIndex
Index

Indexes

Part

Part

Part

Mule ESB

Service interface

Other ESB Services

Figure 11. Depiction of system-level relationship between Drift,
the ESB, and other ESB services.

33

Given this goal, we have pursued an Enterprise Service Bus (ESB) approach using the open-
source Mule ESB [17], extending Drift as a component called Ephemeris[20] (Figure 11). Also,
we have built Connectors (integration units defined in the Mule development framework) which
will make Drift services available on a deployed Mule ESB. The Connectors mediate service re-
quests to a separately running instance using a REST API. The Drift instance will at the same time
be servicing application clients using its high-performance publish/subscribe interfaces. In this
manner, any service deployed on the ESB will be able to interact with the data fusion facilities
provided by Drift, using fused data defined by applications which have no coupling with the ESB.
This integration will also provide benefits in the opposite direction: business processes attached
to the ESB will be able to define data fusions which will then be available for Drift application
clients.

We have developed a Mule ESB Connector for Neo4j, so that fused data definitions and rela-
tionships can be discovered and examined without interacting with the main service. We believe
this will be a powerful new capability for integrating application data with enterprise data, making
possible more holistic views of an organization’s data environment. To explore the integration pos-
sibilities afforded by Mule’s ESB, we have also developed Connectors for certain internal Sandia
services, as well as third-party tools used internally at Sandia. A test case for this is the Splunk
connector (listing provided as Appendix . Using this Connector and the ones provided for Sandia
services such as SAPLE and Drift, a Mule workflow can be constructed which retrieves infor-
mation on up-to-date operational information from a Splunk service, queries SAPLE for relevant
employee contact information, and stores the result data in a Drift instance. Once stored in Drift,
the data becomes “fuse-able” just as any other data, providing end users with great flexibility in
constructing data types for their own use that reflect operational data.

Conclusion

Our exploration of data fusion issues with Drift has been illuminating in several respects.

• While the Drift software itself has enjoyed limited penetration in the Sandia software devel-
opment community, the ideas behind it still resonate with developers and designers working
with diverse data. Sandia’s Cyber community appears satisfied with the Splunk toolset.
However, Splunk’s licensing costs are burdensome enough that other domain researchers are
starting developments projects, based on open-source software, with capability sets similar
to both Splunk and Drift. While the Drift implementation may not be ideal infrastructure for
all such efforts, there is clearly value in establishing this type of software/services layer for
use across the Laboratories.

• A corollary to the previous point is that Laboratory funding for data analytics software
should be carefully rationalized. At the beginning of this project, the intended feature set for
Drift subsumed the capabilities of the Splunk installed base. 12 months later, that situation
was dramatically reversed, owing entirely to a growing community of Sandians focused on
Splunk extension and integration development. Unfortunate timing/coscheduling has been

34

the cause of much unrealized potential in software development in large organizations, and
part of the research agenda is, and properly, to support simultaneous investigation into broad
areas (such as software to support data science) in order to gain multiple perspectives on
large and stubborn issues. Notwithstanding this, and build-vs-buy considerations aside, we
believe decisions by the Laboratories to invest large amounts of funding (for licensing and
development effort) into products like Splunk, creating lock-in engagements with software
that is itself built from open-source components, should be considered carefully.

• An ongoing priority for the Laboratories, properly within the purview of the Data Science
Research Challenge, is to establish procedures for gaining research access to operational
data. In multiple instances during this project, goals of the project were significantly impeded
by the decision of a single individual who happened to be the owner of a particular set of
operational data. No indictment of any kind of those individuals is intended here; they are
responsible for important components of Sandia’s operational infrastructure and have acted
in good faith with respect to their mission(s). However, processes for gaining access to
operational data for research purposes should be formalized so that they are well-understood
and can be applied in an objective manner.

We will be licensing the Drift code as open-source by the end of FY14. A test suite (including a
document corpus drawn from [12]) is also planned for inclusion. Our intention is to explore future
collaborations with university partners that have common interest in the research areas explored
by Drift. We hope to obtain future funding to continue developing these ideas from the LDRD
program, DOE, or external agencies such as the National Science Foundation.

35

36

References

[1] SPARQL Federated Query. http://www.w3.org/TR/
sparql11-federated-query/.

[2] Splunk. http://www.splunk.com.

[3] J.L. Bentley. Multidimensional divide and conquer. Communications of the ACM, 23(4):214–
229, 1980.

[4] Jens Bleiholder and Felix Naumann. Data fusion. ACM Comput. Surv., 41(1), January 2009.
Article 1.

[5] Boost.org. Boost C++ Libraries —Spatial Indexes. http://www.boost.org/doc/
libs/1_55_0/libs/geometry/doc/html/geometry/spatial_indexes.
html. Retrieved May 2014.

[6] Rene De La Briandais. File searching using variable length keys. In Proc. Western Joint
Computer Conference, pages 295–298. IRE-AIEE-ACM, ACM, March 1959.

[7] Fabian Bustamante, Patrick Widener, and Karsten Schwan. Scalable directory services using
proactivity. In Proc. IEEE/ACM Supercomputing, Baltimore, Maryland, November 2002.

[8] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed
storage system for structured data. In Proc. 7th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 205–218, 2006.

[9] Greg Eisenhauer, Hasan Abbasi, Matthew Wolf, and Karsten Schwan. Event-based systems:
opportunities and challenges at exascale. In Proc. Third ACM International Conference on
Distributed Event-Based Systems, Nashville, Tennessee, July 2009. ACM.

[10] Greg Eisenhauer, Matthew Wolf, Hasan Abbasi, Scott Klasky, and Karsten Schwan. A type
system for high performance communication and computation. In Proc. 2011 D3science
Workshop, Stockholm, Sweden, December 2011. IEEE. Associated with the 7th IEEE Inter-
national Conference on e-Science.

[11] Susanne Busse et al. Federated Information Systems: Concepts, Terminology, and Architec-
tures. Technische Universität Berlin, 1999.

[12] Simon Garfunkel, Paul Farrell, Vassil Roussev, and George Dinolt. Bringing science to digital
forensics with standardized forensic corpora. In Proc. Digital Forensic Research Workshop,
Montreal, Canada, 2009. Elsevier.

37

[13] Antonin Gutman. R-trees: a dynamic index structure for spatial searching. In Proc. ACM
SIGMOD International Conference on Management of Data, page 47. ACM, 1984.

[14] Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Alex Pilchin, Swaminathan Siva-
subramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key-
value store. In Proc. ACM Symposium on Operating System Principles (SOSP), pages 205–
220, 2007.

[15] Martin F. Krafft, Paul Harris, and Sylvain Bougerel. libkdtree++. libkdtree.alioth.
debian.org. Retrieved May 2014.

[16] M.P. Papazoglou. Service-oriented computing: concepts, characteristics, and directions.
Proc. Web Information Systems Engineering, Dec 2003.

[17] MuleSoft. Mule ESB. http://www.mulesoft.com/platform/soa/
mule-esb-open-source-esb.

[18] Norbert Beckmann and Hans-Peter Knegel and Ralf Schneider and Bernhard Seeger. The R*-
tree: an efficient and robust access method for points and rectangles. In Proc. ACM SIGMOD
International Conference on Management of Data, page 322. ACM, 1990.

[19] Amit P. Sheth and James A. Larson. Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Comput. Surv., 22(3):183–236, September
1990.

[20] Patrick M. Widener. Data fusion as an enterprise service. In Proc. 11th IEEE International
Conference on Services Computing, Anchorage, Alaska, June 2014. IEEE.

38

Appendix

Sample Mule ESB Cloud Connector

/**
* Sandia Splunk Cloud Connector

*
* @author Patrick Widener <patrick.widener@sandia.gov>

*/
@Connector(name="splunk", schemaVersion="0.1", friendlyName="Splunk")
public abstract class SplunkConnector
{

public static final String BASE_URI = "https://s950881.sandia.gov:8089/";

private HttpClient httpClient;

public SplunkConnector()
{

httpClient = new SystemDefaultHttpClient();
this.setSessionKey(null);

}

/**
* Set property

*
* @param httpClient

*/
public void setHttpClient(HttpClient httpClient) { this.httpClient = httpClient; }
public HttpClient getHttpClient() { return this.httpClient; }

/**
* Configurable

*/
@Configurable
private String splunkUser;

/**
* Set property

*
* @param splunkUser

*/
public void setSplunkUser(String splunkUser) { this.splunkUser = splunkUser; }
/**
* Get property

*/
public String getSplunkUser() { return this.splunkUser; }

/**
* Configurable

*/
@Configurable
private String splunkPasswd;

/**
* Set property

*
* @param splunkPasswd

*/
public void setSplunkPasswd(String splunkPasswd) { this.splunkPasswd = splunkPasswd; }
/**
* Get property

*/
public String getSplunkPasswd() { return this.splunkPasswd; }

39

private URIBuilder getUriBuilderBase(String hname) {
return new URIBuilder().setScheme("https").setHost(hname).setPort(8089);

}

/**
* Connect

*
* @param username A username

* @param password A password

* @throws ConnectionException

*/
@Connect
public void connect(@ConnectionKey String username, String password)

throws org.mule.api.ConnectionException {
/*
* CODE FOR ESTABLISHING A CONNECTION GOES IN HERE

*/

try {

ResponseHandler<String> handler =
new ResponseHandler<String>() {
public String handleResponse(HttpResponse response) throws

ClientProtocolException, IOException {
HttpEntity e = response.getEntity();
if (e != null) {

return EntityUtils.toString(e);
} else {

return null;
}

}
};

// Try to copy with Splunk server’s self-signed certificate
SSLContext sslctx = SSLContext.getInstance("TLS");
sslctx.init(null, null, null);
SSLSocketFactory sf = new SSLSocketFactory(sslctx,

SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER);
Scheme sch = new Scheme("https", 443, sf);
getHttpClient().getConnectionManager().getSchemeRegistry().register(sch);

URIBuilder b = getUriBuilderBase("s950881.sandia.gov");
b.setPath("/servicesNS/admin/search/auth/login");
HttpPost httpPost = new HttpPost(b.build());
List<NameValuePair> postdata = new ArrayList<NameValuePair>();
postdata.add(new BasicNameValuePair("username", getSplunkUser()));
postdata.add(new BasicNameValuePair("password", getSplunkPasswd()));
postdata.add(new BasicNameValuePair("output_mode", "json"));
UrlEncodedFormEntity ure = new UrlEncodedFormEntity(postdata);
httpPost.setEntity(ure);

String jsonResponse = getHttpClient().execute(httpPost, handler);
ObjectMapper jsonMapper = new ObjectMapper();
Map<String,String> result = jsonMapper.readValue(jsonResponse, Map.class);
this.setSessionKey("Splunk " + result.get("sessionKey"));
System.out.println(this.getSessionKey());

}
catch (java.lang.Exception X) {

System.out.println(X.toString());
// throw new ConnectionException(ConnectionExceptionCode.INCORRECT_CREDENTIALS,

null, "Bye!");
}

}

40

/**
* Disconnect

*/
@Disconnect
public void disconnect() {

/*
* CODE FOR CLOSING A CONNECTION GOES IN HERE

*/
}

/**
* Are we connected

*/
@ValidateConnection
public boolean isConnected() {

if (this.getSessionKey() != null) {
return true;

}
return false;

}

/**
* Are we connected

*/
@ConnectionIdentifier
public String connectionId() {

return getSessionKey();
}

/**
* Custom processor

*
* {@sample.xml ../../../doc/Splunk-connector.xml.sample splunk:my-processor}

*
* @param content Content to be processed

* @return Some string

*/
@Processor
public String myProcessor(String content)
{

/*
* MESSAGE PROCESSOR CODE GOES HERE

*/
System.out.println("in myProcessor, string is " + content);
return content;

}

/**
* Configurable REST header parameter

*/
@RestHeaderParam("Authorization")
private String sessionKey;

/**
* Set property

*
* @param sessionKey the session key

*/
public void setSessionKey(String sessionKey) { this.sessionKey = sessionKey; }

/**
* Get property

*/
public String getSessionKey() { return this.sessionKey; }

/**

41

* Custom processor

*
* {@sample.xml ../../../doc/Splunk-connector.xml.sample splunk:get-results}

*
* @param searchId Content to be processed

* @return Some string

* @throws java.io.IOException just because

*/
@Processor
@RestCall(uri =

"https://s950881.sandia.gov:8089/servicesNS/admin/search/search/jobs/?output_mode=json",
method = HttpMethod.GET)

// exceptions="{@RestFailOn(expression = "#[header:http.status != 200]")}")
public abstract String getResults(@RestUriParam("searchId") String searchId) throws

java.io.IOException;

/**
* GET search/fields

*
* Retrieves information about the named field.

*
* {@sample.xml ../../../doc/Splunk-connector.xml.sample splunk:get-search-fields}

*
* @param fieldName Field to retrieve information for

* @param outputMode ’json’ or ’xml’ output format

* @return XML fragment with field information

*
* @throws java.io.IOException For some reason

*/
@Processor
@RestCall(uri = BASE_URI +

"/servicesNS/admin/search/search/fields/{fieldName}/?output_mode={outputMode}", method =
HttpMethod.GET)

public abstract String getSearchFields(@RestUriParam("fieldName") String fieldName,
@Optional @Default("xml")

@RestQueryParam("output_mode") String outputMode)
throws IOException;

/**
* GET search/fields/{field_name}/tags

*
* Retrieves tags for the named field.

*
* {@sample.xml ../../../doc/Splunk-connector.xml.sample splunk:get-search-fields-tags}

*
* @param fieldName Field to retrieve tags

* @param outputMode ’json’ or ’xml’ output format

* @return XML/JSON fragment with field tag information

*
* @throws java.io.IOException For some reason

*/
@Processor
@RestCall(uri = BASE_URI +

"/servicesNS/admin/search/search/fields/{fieldName}/tags/?output_mode={outputMode}",
method = HttpMethod.GET)

public abstract String getSearchFieldsTags(@RestUriParam("fieldName") String fieldName,
@Optional @Default("xml")

@RestQueryParam("output_mode") String outputMode)
throws IOException;

/**
* POST search/fields/{field_name}/tags

*
* Updates tags for the named field.

*
*
* {@sample.xml ../../../doc/Splunk-connector.xml.sample splunk:post-search-fields-tags}

42

*
* @param fieldName Field to update tags for

* @param outputMode ’json’ or ’xml’ output format

* @param value Tag name to update for this field

* @param add Tag to attach to the field_name:value combo

* @param delete Tag to remove from the field_name:value combo

* @return XML/JSON fragment with field tag information

*
* @throws java.io.IOException For some reason

*/
@Processor
@RestCall(uri = BASE_URI +

"/servicesNS/admin/search/search/fields/{fieldName}/tags/?output_mode={outputMode}",
method = HttpMethod.POST)

public abstract String postSearchFieldsTags(@RestUriParam("fieldName") String fieldName,
@RestQueryParam("value") String value,
@Optional @RestQueryParam("add") String add,
@Optional @RestQueryParam("delete") String

delete,
@Optional @Default("xml")

@RestQueryParam("output_mode") String
outputMode)

throws IOException;

/**
* GET search/tags/{tag_name}

*
* Returns a list of field:value pairs associated with tag_name

*
* {@sample.xml ../../../doc/Splunk-connector.xml.sample splunk:get-search-tags}

*
* @param tagName Name of tag of interest

* @param outputMode ’json’ or ’xml’ output format

* @return XML/JSON fragment with field_name:value pairs

*
* @throws java.io.IOException For some reason

*/
@Processor
@RestCall(uri = BASE_URI +

"/servicesNS/admin/search/search/tags/{tagName}/?output_mode={outputMode}", method =
HttpMethod.GET)

public abstract String getSearchTags(@RestUriParam("tagName") String tagName,
@Optional @Default("xml")

@RestQueryParam("output_mode") String outputMode)
throws IOException;

/**
* GET directory

*
* Enumerate objects in Splunk.

*
* {@sample.xml ../../../doc/Splunk-connector.xml.sample splunk:directory}

*
* @param tagName Name of tag of interest

* @param outputMode ’json’ or ’xml’ output format

* @return XML/JSON fragment with field_name:value pairs

*
* @throws java.io.IOException For some reason

*/
@Processor
@RestCall(uri = BASE_URI + "/servicesNS/admin/search/directory", method = HttpMethod.GET)
public abstract String directory()

throws IOException;

}

43

DISTRIBUTION:

1 MS 1319 Patrick M. Widener, 1423
1 MS 0359 D. Chavez, LDRD Office, 1911
1 MS 0899 Technical Library, 9536 (electronic copy)

44

v1.38

